If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2+20t-1200=0
a = 3; b = 20; c = -1200;
Δ = b2-4ac
Δ = 202-4·3·(-1200)
Δ = 14800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14800}=\sqrt{400*37}=\sqrt{400}*\sqrt{37}=20\sqrt{37}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{37}}{2*3}=\frac{-20-20\sqrt{37}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{37}}{2*3}=\frac{-20+20\sqrt{37}}{6} $
| 4(x+6)-8=8(2x+5) | | 2(n-7)-(5-6n)=7n | | -3n+67=n | | 3(x)3(9)=99 | | 5=3-n | | 12=3-y | | -9=-7p-2p | | 3(x)+3(x+15)=99 | | √x-5+7=9 | | 4x+3-2x=3+x-3 | | 10x+60=15x-30 | | 5(x)+5(15)=165 | | -3(x-2)=-4(x+2) | | 2x–13=15 | | -2(8-4x)=6x-32 | | Y/4=y/3+3 | | 5x=9x-2=11x+7.6 | | 8y+3-3y=9+4y-4 | | 5(x)+5(x+3)=165 | | 3(n-67)=9 | | f-3/4=3/2 | | -8v+2(v+7)=-4 | | 3^2x+1-8*3^x+4=0 | | 38t+47t=510 | | 3(c+653)=-990 | | -2x-22=6-4x | | 4=3(3)+b | | 60-4x=70-24x | | 37t-23t=14 | | 2(3x-4)+12x=1 | | 3x-58=-6x+23 | | X-34=22-3x |